FACTOR ANALYSIS




Types of FA

- Exploratory Factor Analysis (EFA): Is used to discover the factor structure of a
construct. It is data driven.

» Confirmatory Factor Analysis (CFA): is used to confirm the fit of the hypothesized
factor structure to the observed (sample) data. It is theory driven.




Holzinger and Swineford Dataset

O The classic Holzinger and Swineford (1939) dataset consists of mental ability test scores of seventh- and
eighth-grade children from two different schools (Pasteur and Grant-White).

O Inthe original dataset (available in the MBESS package), there are scores for 26 tests.

L However, a smaller subset with g variables is more widely used in the literature.

O The raw data analyzed here are on the first six psychological item (variable)s in for 301.
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Holzinger and Swineford Dataset

Id: Identifier X3: Lozenges
Sex: Gender X4: Paragraph comprehension

Ageyr:Age, year part X5: Sentence completion

School: School (Pasteur or Grant-White) X7: Speeded addition

Grade: Grade X8: Speeded counting of dots

a
a
a
O Agemo: Age, month part X6: Word meaning
a
a
g

X1:Visual perception X9g: Speeded discrimination straight and

curved capitals
O X2: Cubes
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Data Covariance
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Path Diagram Legend

Latent variables (factors)

Observed indicators or items

A Intercept

Paths

Variances or covariances
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Sample Covariance matrix

~~

2(9) — APA + 06, versus versus S = 3]

round(cov(HSI[,7:9]),2)

x1  x2 X3

Symmetric matrix x1 1.36 0.41 0.58
x2 0.41 1.39 0.45

x3 0.58 0.45 1.28




Degree of Freedom

» Known values: total number of parameters

p(p+1)/2

For three items

3(4)/2=6

A1 011 012
2O) =[] (W) (A1 A2 A3)+ | b2 Oo

A3 031 032

Highlight the unique parameters. Count 10.




Fixed vs. free parameters

- Fixed parameters: predetermined to have a specific value

AIZ]. 011:1 012:0 91320
2(9): Ay =1 (1/)11:1)()\1:1 Ay =1 A3:1)+ 01 =0 6Oy =1 653=0

A3:1 031:0 932:0 933:1

 Free parameters

number of free parameters= number of unique parameters —number of fixed parameters




Fixed vs. free parameters

df= number of known values—number of free parameters

Calculated the degrees of freedom for our model. Should be 6.

- df negative, known<free (under-identified, cannot run model)

- df=0,known=free (just identified or saturated, no model fit)

- df positive, known>free (over-identified, model fit can be assessed)




Three-ltem CFA

« Known values=6
e Free parameters=7-0

o Df=6-7=-1




ldentification of Three-Item

- Marker method: fixes the first loading of each factor to 1

1 ;1 O 0
2(9) = 11 | A2 (1 Ao /\3) = 0 6Hy» O
A3 0 0 6

- Variance standardized method: fixes the variance of each factor to 1 but freely
estimates all loadings.

SO =M (Al A X))+l 0 6 0
A3 0 0 03




Lavvan syntax

» ~ predict regression Y~X, Y<----X
=~ indicator factor analysis

« ~~ cOvariance fenf

*~1 intercept Y~1

. 1* fixes parameter f=-1%y1+y2+y3
NA* frees parameter useful to override default marker method
«a* |abels the parameter ‘a’, model constraints




Marker method in laavan

#one factor three items, default marker method
»Vis <-'visual=~x1+x2+x3'

fitafactora <- cfa(vis, data = HS)
summary(fitafactori)

»Visual<-'visi=~1*x1+x2+x3'
fitafactori<-cfa(visual, data=HS)

summary(fit2factora)




Marker method in laavan

Latent variables:

Estimate Std.Err z-value

1.000
0.778 0.141 5.532
1.107 0.214 5.173

variances:

X1
. X2
. X3
visual

Estimate . P(>1z])
0.835 . 0.000
1.065 . 0.000
0.633 . 0.000
0.524 . 0.000




Variance std method in laavan

#one factor three items, variance std method
> Visuaiv<-'visv=~NA*x1+x2+x3+
VisV~~1*visy'
fit3factora<-cfa(visualv,data=HS)

summary(fit2factori)

»visualvi <-'visvi=~NA*x1+x2+x3'
> fitgfactora<-cfa(visualvi,data=HS,std.lv=TRUE)

»summary(fitgfactora)




Latent variables:

VisVv =~
x1
X2
X3
Estimate

0.724
0.563
0.801

variances:

visv
.x1
. X2
.X3
Estimate
1.000
0.835
1.065
0.633

std.Err

0.090
0.082
0.093

std.Err

0.118
0.105
0.129

z-value

7.064
10.177
4.899

Variance std method in laavan

PC>1zl)

0.000
0.000
0.000



Automatic standardization in lavaan

visualvi <-'visva=~NA*x1+x2+x3'
fitgfactori<-cfa(visualva,data=HS,std.lv=TRUE)

summary(fit4factorz, )




Automatic standardization in lavaan

Latent variables:

solution standardizes the factor loadings by the
standard deviation of both the predictor (the factor,
X) and the outcome (the item, Y)

visual =~
x1
X2
x3
Estimate ; z-value P(Glz]) std.lv std.all

1.000 0.724 0.621
0.778 . 0.000 0.563 0.479
1.107 . 0.000 0.801 0.710

For one standard deviation increase in Visual, x2 goes
up by 0.479 standard deviation unites.

we only standardize by the predictor (the factor, X).

variances:

Estimate Std. z-value std.Tv std.all

0.835 . 7.064 0.835 0.614 0.6142=0.377

1.065 . 10.177 1.065  0.771 : . . :
0.633 _ 4.899 0.633  0.496 Only 37.7 of variance in xa can be explained by visual.

0.524 . 4.021 1.000  1.000




Two Factor Confirmatory Factor Analysis




Two Factor Confirmatory Factor Analysis

#correlated two factor solution, marker method
HS.model1 <-"visual=~x1+x2+x3

textual =~ x4 + x5 + x6"
fitafactor2 <- cfa(HS.model1, data = HS)
summary(fitafactor2, standardized = TRUE)

#correlated two factor solution, variance std method
HS.model2 <-"visual=~x1+x2+x3

textual =~ x4 + x5 + x6"
fitafactorz2 <- cfa(HS.model2,std.lv=TRUE, data = HS)
summary(fit2factorz, standardized = TRUE)




Two Factor Confirmatory Factor Analysis

#correlated two factor solution, marker method

covariances:

visual ~~
textual
Estimate Std.eErr z-value P(>|z|) Std.lv std.all

0.414 0.074 5.562 0.000 0.461 0.461

covariance correlation




Two Factor Confirmatory Factor Analysis

#uncorrelated two factor solution, marker method
HS.model3 <-"visual=~x1+x2+x3

textual =~ x4 + X5 + X6

visual~~o*textual"
fitz2factor3 <- cfa(HS.model3,std.lv=TRUE, data = HS)
summary(fit2factors, standardized = TRUE)




Model Fit Statistics

H, : X(0) = accept-support test
versus

&y 2(9) = ¥ reject-support test

versus

versus




Model Fit Statistics

. Model chi-square is the chi-square statistic we obtain from the maximum likelihood statistic (in lavaan, this is known

as the Test Statistic for the Model Test User Model)
. CFl is the Comparative Fit Index — values can range between O and 1 (values greater than 0.90, conservatively 0.95

indicate good fit)
. TLI Tucker Lewis Index which also ranges between O and 1 (if it's greater than 1 it should be rounded to 1) with values

greater than 0.90 indicating good fit. If the CFl and TLI are less than one, the CFl is always greater than the TLL

. RMSEA is the root mean square error of approximation
e In lavaan, you also obtain a p-value of close fit, that the RMSEA < 0.05. If you reject the model, it means your

model is not a close fitting model.

HS.model1 <-"visual=~x1+x2+x3
textual =~ x4 + x5 + x6"
fitafactor2 <- cfa(HS.model, data = HS)
summary(fitafactor2, standardized = TRUE, fit.measures = TRUE)
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How many free parameters? Count 8.
How many degrees of freedom? Count 28.

8(9)/2 - 8.

Worst model.
Compare with saturated model.



Incremental versus absolute fit index

For over-identified models, there are many types of fit indexes available to the researcher.

Historically, model chi-square was the only measure of fit but in practice the null hypothesis was
often rejected due to the chi-square’s heightened sensitivity under large samples. To resolve this
problem, approximate fit indexes that were not based on accepting or rejecting the null hypothesis
were developed.

Approximate fit indexes can be further classified into a) absolute and b) incremental or relative fit
indexes.

An incremental fit index assesses the ratio of the deviation of the user model from the worst fitting
model (the baseline model) against the deviation of the saturated model from the baseline model.
Conceptually, if the deviation of the user model is the same as the deviation of the saturated model
(best fitting model), then the ratio should be 1. Alternatively, the more discrepant the two deviations,
the closer the ratio is to O (see figure below). Examples of incremental fit indexes are the CFl and
TLI.

An absolute fit index on the other hand, does not compare the user model against a baseline
model, but instead compares it to the observed data. An example of an absolute fit index is the
RMSEA (see figure above). 20




Incremental versus absolute fit index

e Perfect Fit h Bad Fit

4 )

Baseline Model
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CFl (Comparative Fit Index)

The CFl or comparative fit index is a popular fit index as a supplement to the model chi-square. Let § = x2—df where df is the degrees of freedom for that
particular model. The closer d is to zero, the more the model fits the data. The formula for the CFl is:

J(Baseline)—4(User)

CFI =
d(Baseline)

Mode]l Test User Model: Model Test Baseline Model:

Test statistic Test statistic 668.643
Degrees of freedom Degrees of freedom 15
P-value (chi-square) P-value 0.000

d(User) = 24.361 — 8 = 16.361 d(Baseline) = 668.643 — 15 = 653.643

_ 653.643 —16.361
B 653.643 B

975

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)




TLI (Tucker Lewis Index)

The Tucker Lewis Index is also an incremental fit index that is commonly outputted with the CFl in popular packages such as Mplus and in this case lavaan. The
2
term used in the TFl is the relative chi-square (a.k.a. normed chi-square) defined as ‘%. Compared to the model chi-square, relative chi-square is less sensitive to

sample size. To understand relative chi-square, we need to know that the expected value or mean of a chi-square is its degrees of freedom (i.e.,

E(x*(df)) = df).

x*(Baseline) /d f(Baseline)  — x*(User) /df(User)

TLI = .
x?(Baseline) /d f(Baseline) —1

(668643

24361
n(Z4g—,1) —min(=5>=,1) 445763045 41531

668.643 44576 —-1  43.576
n(Z4g—,1) -1

CFI = = 0.953

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

The CFl is always greater than the TLI. CFI pays a penalty of one for every parameter estimated. Because the TLI and CFI are highly correlated, only one of the two
should be reported.

33




RMSEA

The root mean square error of approximation is an absolute measure of fit because it does not compare the discrepancy of the user model relative to a baseline
model like the CFl or TLI. Instead, RMSEA defines § as the non-centrality parameter which measures the degree of misspecification. Recall from the CFl that

§ = x2—df where df is the degrees of freedom for that particular model. The greater the § the more misspecified the model.

6
df(n —1)

where n is the total number of observations. The cutoff criteria as defined in Kline (2016, p.274-275)

RMSFEA =

o < 0.05 (close-fit)

¢ between .05 and .08 (reasonable approximate fit, fails close-fit but also fails poor-fit)
o >= (.10 (poor-fif)

§(User) = 24.361 — 8 = 16.361

RMSEA =

Root Mean Square Error of Approximation:

RMSEA

90 Percent confidence interval - lower
90 percent confidence interval - upper
P-value RMSEA <= 0.05




Second-Order CFA

O Suppose the Principal Investigator believes that the correlation between Visual and Textual are first-
order factors is caused more by the second-order factor, overall mental ability.

O In order to understand the model, we have to understand endogenous and exogenous factors.

O An endogenous factor is a factor that is being predicted by another factor (or variable in general).

O An exogenous factor is a factor that is not being predicted by another.

O The main difference is that endogenous factors now have a residual variance as it is not being predicted
by another latent variable known as C. The residual variance is essentially the variance of {, which we
classify here as .

Chi-Sguare=374.69, df=101, P-value=0.00000, RMSEA=0.052




Second-Order CFA

##second order three factor solution, marker method
HS.models <- "visual=~x1+x2+x3

textual =~ x4 + X5 + x6

X2 ~~ X3

mental =~ 1*visual + 1*textual

mental ~~ mental"
secondorder <- cfa(HS.models, data=HS)
summary(secondorder,fit.measures=TRUE,standardized=TRUE)




Assumptions of the factor analysis model

In traditional confirmatory factor analysis or structural equation modeling, the

e mean of the intercepts is zero E(7) = 0 (not tenable, this is no longer true with modern full information CFA/SEM, see Kline 2016)
e mean of the factor is zero E(n) =0
e mean of the residual is zero FE(e) =0

* covariance of the factor with the residual is zero C'ov(n,€) =0










Model Fit Indices

« There are two types of model fit indices available for CFA;

« Global: Measure the global recovery of empirical observations without considering the mean
and covariance structure.
- Absolute: Absolute fit indices assess the overall theoretical model against the observed data.

« Chi-square (y?) statistic

» Goodness-of-fit index (GFI)

« Adjusted GFI

« Root mean square error of approximation (RMSEA)

« Root mean square residual and standardized root mean square residual (SRMR)

- Incremental (also known as comparative or relative): represent the improved fit for the model compared to the
assumption of independence of variables.

« Comparative fit index (CFI),
« Normed-fit index (NFI)
« Non-normed fit index
- Parsimony fit indices: Parsimonious fit indices aim to address this issue by adding a penalty for model complexity.
« Parsimony goodness-of-fit index
« Parsimony normed fit index

« Local fit indices: examine model components including but not limited to factor correlations,
inter-item residual covariance, and suggested model re-specification statistics.




The lowest possible RMSEA is 0. Values < .05 are
considered indicative of close fit. Values up to .08 are
considered acceptable (Pituch & Stevens, 2016).

B ;{z—dfM
RMSEA = \]dfo(N—l)

The pclose is a test of whether the model departs
significantly from one that is a close-fit to the data
(i.e., RMSEA< or = .05).

The CFl and TLI are both incremental fit indices.
Values > .95 for these indices indicate very good
fit (Schumaker & Lomax, 2016). Values .90 or
above are considered evidence of acceptable fit
(Pituch & Stevens, 2016).

2 _df 2 2 2
CFl = 1_;{M—M TLI = [XB XM]![;{B _1]

X2 - dfp dfg  dfy |’ | dfp

SRMR values up to .05 are considered indicative
of a close-fitting model. Values between .05 up
to .10 suggest acceptable fit (Pituch & Stevens,
2016).

The SRMR is the ratio of the sum of the squared differences be-
tween the correlations for the observed variable and the correla-
tions implied by our model divided by the number of variances
and covariances. This is given by the formula below

| Ziesj(rij-pig)?
SRHR = \] o(0+1))2)




» The criterion of Fornell-Larcker (1981) has been commonly used to assess the
degree of shared variance between the latent variables of the model.

» According to this criterion, the convergent validity of the measurement model can
be assessed by the Average Variance Extracted (AVE) and Composite Reliability
(CR).

» AVE measures the level of variance captured by a construct versus the level due to
measurement error, values above 0.7 are considered very good, whereas, the level
of 0.5 is acceptable.

» CRis a less biased estimate of reliability than Chonbachs Alpha, the acceptable
value of CR is 0.7 and above.




References

- Kline suggests that at a minimum the following indices should be reported and
assessed in combination: chi-square; RMSEA; CFl; and SRMSR.

- Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford
publications.

 Confirmatory Factor Analysis (CFA) in R with lavaan (ucla.edu)

« Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2006). Multivariate data
analysis. Pearson Prentice Hall Upper Saddle River



https://stats.oarc.ucla.edu/r/seminars/rcfa/
https://stats.oarc.ucla.edu/r/seminars/rcfa/
https://stats.oarc.ucla.edu/r/seminars/rcfa/
https://stats.oarc.ucla.edu/r/seminars/rcfa/
https://stats.oarc.ucla.edu/r/seminars/rcfa/

