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Types of FA 

• Exploratory Factor Analysis (EFA): Is used to discover the factor structure of a 
construct. It is data driven. 

 

 

• Confirmatory Factor Analysis (CFA): is used to confirm the fit of the hypothesized 
factor structure to the observed (sample) data. It is theory driven. 
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Holzinger and Swineford Dataset 
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 The classic Holzinger and Swineford (1939) dataset consists of mental ability test scores of seventh- and 

eighth-grade children from two different schools (Pasteur and Grant-White). 

  In the original dataset (available in the MBESS package), there are scores for 26 tests.  

 However, a smaller subset with 9 variables is more widely used in the literature. 

 The raw data analyzed here are on the first six psychological item (variable)s in for 301. 
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Holzinger and Swineford Dataset 

 Id: Identifier 

 Sex: Gender 

 Ageyr:Age, year part 

 Agemo: Age, month part 

 School: School (Pasteur or Grant-White) 

 Grade: Grade 

 X1:Visual perception 

 X2: Cubes 

 X3: Lozenges 

 X4: Paragraph comprehension 

 X5: Sentence completion 

 X6: Word meaning 

 X7: Speeded addition 

 X8: Speeded counting of dots 

 X9: Speeded discrimination straight and 
curved capitals 
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Model Covariance  
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Factor (unobserved variable) 

loading 

Predictor(observed variable) 
coefficient 
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Covariance of 
factors 

Data Covariance 

Model Population 

Model implied 
Covariance 

Covariance of 
residuals 



Path Diagram 
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Sample Covariance matrix 

round(cov(HS[,7:9]),2) 
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Symmetric matrix 



Degree of Freedom 

• Known  values: total number of parameters 
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Fixed vs. free parameters 

• Fixed parameters: predetermined to have a specific value 

 

 

 

 

• Free parameters 

  number of free parameters= number of unique parameters –number of fixed parameters 
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Fixed vs. free parameters 

df= number of known values–number of free parameters 

 

Calculated the degrees of freedom for our model. Should be 6. 

 

 

• df negative, known<free (under-identified, cannot run model) 

• df=0,known=free (just identified or saturated, no model fit) 

• df positive, known>free (over-identified, model fit can be assessed) 

13 



Three-Item CFA 

• Known values=6 

• Free parameters=7-0 

• Df=6-7=-1 
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Identification of Three-Item 

• Marker method: fixes the first loading of each factor to 1 

 

 

 

• Variance standardized method: fixes the variance of each factor to 1 but freely 
estimates all loadings. 
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Lavvan syntax 
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Y~X, Y<----X 

f~~f 

Y~1 

f=~1*y1+y2+y3 



Marker method in laavan 

#one factor three items, default marker method 

vis <-'visual=~x1+x2+x3‘ 

fit1factor1 <- cfa(vis, data = HS)  

summary(fit1factor1) 

visual<-'vis1=~1*x1+x2+x3' 

fit2factor1<-cfa(visual,data=HS) 

summary(fit2factor1) 
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Marker method in laavan 



Variance std method in laavan 

#one factor three items, variance std method 

visua1v<-'visv=~NA*x1+x2+x3+ 

                    visv~~1*visv' 

    fit3factor1<-cfa(visualv,data=HS) 

    summary(fit2factor1) 

 

 

visualv1 <-'visv1=~NA*x1+x2+x3' 

fit4factor1<-cfa(visualv1,data=HS,std.lv=TRUE) 

summary(fit4factor1) 
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Variance std method in laavan 
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Automatic standardization in lavaan 

visualv1 <-'visv1=~NA*x1+x2+x3' 

fit4factor1<-cfa(visualv1,data=HS,std.lv=TRUE) 

summary(fit4factor1, ) 
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Automatic standardization in lavaan 
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solution standardizes the factor loadings by the 
standard deviation of both the predictor (the factor, 

X) and the outcome (the item, Y) 

we only standardize by the predictor (the factor, X). 

For one standard deviation increase in Visual, x2 goes 
up by 0.479 standard deviation unites.  

0.6142=0.377  
Only 37.7 of variance in x1 can be explained by visual. 



Two Factor Confirmatory Factor Analysis 
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Two Factor Confirmatory Factor Analysis 
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#correlated two factor solution, marker method  
HS.model1 <-"visual=~x1+x2+x3  
             textual =~ x4 + x5 + x6" 
fit1factor2 <- cfa(HS.model1, data = HS) 
summary(fit1factor2, standardized = TRUE) 

#correlated two factor solution, variance std method  
HS.model2 <-"visual=~x1+x2+x3  
            textual =~ x4 + x5 + x6" 
fit2factor2 <- cfa(HS.model2,std.lv=TRUE, data = HS) 
summary(fit2factor2, standardized = TRUE) 



Two Factor Confirmatory Factor Analysis 
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covariance correlation 

#correlated two factor solution, marker method 



Two Factor Confirmatory Factor Analysis 
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#uncorrelated two factor solution, marker method 
HS.model3 <-"visual=~x1+x2+x3  
            textual =~ x4 + x5 + x6 
            visual~~0*textual" 
fit2factor3 <- cfa(HS.model3,std.lv=TRUE, data = HS) 
summary(fit2factor3, standardized = TRUE) 



Model Fit Statistics 
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Model Fit Statistics 
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HS.model1 <-"visual=~x1+x2+x3  
                           textual =~ x4 + x5 + x6" 
fit1factor2 <- cfa(HS.model, data = HS) 
summary(fit1factor2, standardized = TRUE, fit.measures = TRUE) 



Baseline 
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Incremental versus absolute fit index 
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 For over-identified models, there are many types of fit indexes available to the researcher. 

 

  Historically, model chi-square was the only measure of fit but in practice the null hypothesis was 

often rejected due to the chi-square’s heightened sensitivity under large samples. To resolve this 

problem, approximate fit indexes that were not based on accepting or rejecting the null hypothesis 

were developed.  

 

 Approximate fit indexes can be further classified into a) absolute and b) incremental or relative fit 

indexes.  

 

 An incremental fit index assesses the ratio of the deviation of the user model from the worst fitting 

model (the baseline model) against the deviation of the saturated model from the baseline model. 

Conceptually, if the deviation of the user model is the same as the deviation of the saturated model 

(best fitting model), then the ratio should be 1. Alternatively, the more discrepant the two deviations, 

the closer the ratio is to 0 (see figure below). Examples of incremental fit indexes are the CFI and 

TLI.  

 

 An absolute fit index on the other hand, does not compare the user model against a baseline 

model, but instead compares it to the observed data. An example of an absolute fit index is the 

RMSEA (see figure above). 



Incremental versus absolute fit index 
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CFI (Comparative Fit Index) 
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𝛿 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 668.643 − 15 = 653.643 𝛿 𝑈𝑠𝑒𝑟 = 24.361 − 8 = 16.361 

𝐶𝐹𝐼 =
653.643 − 16.361

653.643
= 0.975 



TLI (Tucker Lewis Index) 

33 

𝐶𝐹𝐼 =
min

668.643
15

, 1 − min⁡(
24.361

8
, 1)⁡

min
668.643

15
, 1 − 1

=
44.576 − 3.045

44.576 − 1
⁡=

41.531

43.576
= 0.953 

The CFI is always greater than the TLI.  CFI pays a penalty of one for every parameter estimated. Because the TLI and CFI are highly correlated, only one of the two 
should be reported. 



RMSEA 
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𝑅𝑀𝑆𝐸𝐴 =
16.361

8(301)
= 0.082 

𝛿 𝑈𝑠𝑒𝑟 = 24.361 − 8 = 16.361 



Second-Order CFA 
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 Suppose the Principal Investigator believes that the correlation between Visual and Textual are first-

order factors is caused more by the second-order factor, overall mental ability. 

 In order to understand the model, we have to understand endogenous and exogenous factors.  

 An endogenous factor is a factor that is being predicted by another factor (or variable in general). 

 An exogenous factor is a factor that is not being predicted by another.  

 The main difference is that endogenous factors now have a residual variance as it is not being predicted 

by another latent variable known as ζ. The residual variance is essentially the variance of ζ, which we 

classify here as ψ. 



Second-Order CFA 
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##second order three factor solution, marker method 
HS.model5 <- "visual=~x1+x2+x3  
             textual =~ x4 + x5 + x6 
             x2 ~~ x3 
             mental =~ 1*visual + 1*textual 
              mental ~~  mental" 
secondorder <- cfa(HS.model5, data=HS)  
summary(secondorder,fit.measures=TRUE,standardized=TRUE) 
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Assumptions of the factor analysis model 
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Model Fit Indices 
• There are two types of model fit indices available for CFA;  

• Global: Measure the global recovery of empirical observations without considering the mean 
and covariance structure.  
• Absolute: Absolute fit indices assess the overall theoretical model against the observed data.  

• Chi-square (χ2) statistic  

• Goodness-of-fit index (GFI) 

• Adjusted GFI 

• Root mean square error of approximation (RMSEA) 

•  Root mean square residual and standardized root mean square residual (SRMR) 

•  Incremental (also known as comparative or relative): represent the improved fit for the model compared to the 
assumption of independence of variables. 

• Comparative fit index (CFI), 

• Normed-fit index (NFI) 

•  Non-normed fit index 

• Parsimony fit indices: Parsimonious fit indices aim to address this issue by adding a penalty for model complexity. 

•  Parsimony goodness-of-fit index  

• Parsimony normed fit index 

• Local fit indices: examine model components including but not limited to factor correlations, 
inter-item residual covariance, and suggested model re-specification statistics. 

40 
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• The criterion of Fornell-Larcker (1981) has been commonly used to assess the 
degree of shared variance between the latent variables of the model. 

• According to this criterion, the convergent validity of the measurement model can 
be assessed by the Average Variance Extracted (AVE) and Composite Reliability 
(CR).  

• AVE measures the level of variance captured by a construct versus the level due to 
measurement error, values above 0.7 are considered very good, whereas, the level 
of 0.5 is acceptable. 

• CR is a less biased estimate of reliability than Chonbachs Alpha, the acceptable 
value of CR is 0.7 and above. 
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